भारतीय गणित
गणितीय
गवेषणा का महत्वपूर्ण भाग भारतीय उपमहाद्वीपमें उत्पन्न हुआ है। संख्या, शून्य, स्थानीय मान, अंकगणित, ज्यामिति, बीजगणित, कैलकुलस आदि का प्रारम्भिक कार्य भारत में सम्पन्न हुआ। गणित-विज्ञान न केवल औद्योगिक क्रांति का बल्कि परवर्ती काल में हुई वैज्ञानिक उन्नति का भी केंद्र बिन्दु रहा है। बिना गणित के विज्ञान की कोई भी शाखा पूर्ण नहीं हो सकती। भारत ने औद्योगिक क्रांति के लिए न केवल आर्थिक पूँजी प्रदान की वरन् विज्ञान की नींव के जीवnत तत्व भी प्रदान किये जिसके बिना मानवता विज्ञान और उच्च तकनीकी के इस आधुनिक दौर में प्रवेश नहीं कर पाती। विदेशी विद्वानों ने भी गणित के क्षेत्र में भारत के योगदान की मुक्तकंठ से सराहना की है।
ब्रह्मगुप्त प्रमेय के अनुसार AF=FD (इसके लिए आवश्यक शर्तें चित्र में ही दर्शायी गयी हैं।)
'गणित' शब्द का इतिहास :-संपादित करेंविश्व के प्राचीनतम ग्रन्थ वेद संहिताओं से गणित तथा ज्योतिष को अलग-अलग शास्त्रों के रूप में मान्यता प्राप्त हो चुकी थी। यजुर्वेद में खगोलशास्त्र (ज्योतिष) के विद्वान् के लिये ‘नक्षत्रदर्श’ का प्रयोग किया है तथा यह सलाह दी है कि उत्तम प्रतिभा प्राप्त करने के लिये उसके पास जाना चाहिये (प्रज्ञानाय नक्षत्रदर्शम्)। वेद में शास्त्र के रूप में ‘गणित’ शब्द का नामतः उल्लेख तो नहीं किया है पर यह कहा है कि जल के विविध रूपों का लेखा-जोखा रखने के लिये ‘गणक’ की सहायता ली जानी चाहिये।
शास्त्र के रूप में ‘गणित’ का प्राचीनतम प्रयोग लगधऋषि द्वारा प्रोक्त वेदांग ज्योतिष नामक ग्रन्थ का एक श्लोक में माना जाता है। पर इससे भी पूर्व छान्दोग्य उपनिषद् में सनत्कुमार के पूछने पर नारद ने जो 18 अधीत विद्याओं की सूची प्रस्तुत की है, उसमें ज्योतिष के लिये ‘नक्षत्र विद्या’ तथा गणित के लिये ‘राशि विद्या’ नाम प्रदान किया है। इससे भी प्रकट है कि उस समय इन शास्त्रों की तथा इनके विद्वानों की अलग-अलग प्रसिद्धि हो चली थी।
आगे चलकर इस शास्त्र के लिये अनेक नाम विकसित होते रहे। सर्वप्रथम ब्रह्मगुप्त ने पाट या पाटी का प्रयोग किया। बाद में श्रीधराचार्य ने ‘पाटी गणित’ नाम से महनीय ग्रन्थ लिखा। तब से यह नाम लोकप्रिय हो गया। पाटी या तख्ती पर खड़िया द्वारा संक्रियाएँ करने से यह नाम समाज में चलने लगा। अरब में भी गणित की इस पद्धति को अपनाने से इस नाम के वजन पर ‘इल्म हिसाब अल तख्त’ नाम प्रचलित हुआ।
परिभाषा-संपादित करेंभारतीय परम्परा में गणेश दैवज्ञ ने अपने ग्रन्थ बुद्धिविलासिनी में गणित की परिभाषा निम्नवत की है-
गण्यते संख्यायते तद्गणितम्। तत्प्रतिपादकत्वेन तत्संज्ञं शास्त्रं उच्यते।(जो परिकलन करता और गिनता है, वह गणित है तथा वह विज्ञान जो इसका आधार है वह भी गणित कहलाता है।)गणित दो प्रकार का है-
व्यक्तगणित या पाटीगणित - इसमें व्यक्त राशियों का उपयोग किया जाता है।
अव्यक्तगणित या बीजगणित - इसमें अव्यक्त या आज्ञात राशियों का उपयोग किया जाता है। अव्यक्त संख्याओं को 'वर्ण' भी कहते हैं। इन्हें 'या', 'का', 'नी' आदि से निरूपित किया जाता है। (जैसे आजकल रोमन अक्षरों x, y, z का प्रयोग किया जाता है। (का = कालक, नी = नीलक, या = यावत्, ता = तावत्)
भारतीय ग्रन्थों में गणित की महत्ता का प्रकाशनसंपादित करेंवेदांग ज्योतिष में गणित का स्थान सर्वोपरि (मूधन्य) बताया गया है -
यथा शिखा मयूराणां नागानां मणयो यथा। तद्वद् वेदांगशास्त्राणां गणितं मूर्ध्नि संस्थितम्।।(वेदांग ज्योतिष - ५)(जिस प्रकार मोरों के सिर पर शिखा और नागों के सिर में मणि सर्वोच्च स्थान में होते हैं उसी प्रकार वेदांगशास्त्रों में गणित का स्थान सबसे उपर (मूर्धन्य) है।
इसी प्रकार,
बहुभिर्प्रलापैः किम्, त्रयलोके सचरारे। यद् किंचिद् वस्तु तत्सर्वम्, गणितेन् बिना न हि ॥ — महावीराचार्य, गणितसारसंग्रह में (बहुत प्रलाप करने से क्या लाभ है ? इस चराचर जगत में जो कोई भी वस्तु है वह गणित के बिना नहीं है / उसको गणित के बिना नहीं समझा जा सकता)
अन्य शास्त्रों में गणित की विवेचनासंपादित करेंभारत में अन्य शास्त्रों के विद्वान भी गणित की भावना से ओत-प्रोत रहे प्रतीत होते हैं। उन शास्त्रों में प्रसंगवश गणित विषयक जानकारियाँ बिखरी पड़ी हैं। महान वैयाकरण पाणिनि ने गणित के अनेक शब्दों की सूक्ष्म विवेचना की है। उन्होंने उस समय की आवश्यकतानुसार प्रतिशत के स्थान पर मास में देय ब्याज के लिये एक ‘प्रतिदश’ अनुपात का उल्लेख किया है (कुसीददशैकादशात् ष्ठन्ष्ठचौ (पा.सा. 4.4.31))। चक्रवृद्धि ब्याज द्वारा सर्वाधिक बढ़ी हुई रकम को ‘महाप्रवृद्ध’ बताया है। तोल, माप, सिक्के, पण्य द्रव्य के सैकड़ो शब्दों के वर्णन के अन्तर्गत त्रैराशिक नियम की सूचना दी है।
दर्शनशास्त्र में वेदान्त में अध्यारोप अपवाद के सिद्धान्त बीजगणितीय समीकरण या अंकगणित के ‘इष्टकर्म’ के समकक्ष हैं। न्याय शास्त्र की अनुमान या तर्कविद्या सर्वथा गणितीय नियमों से संचालित है।
ई. पू. दूसरी शती में पिंगल विरचित छन्दशास्त्र में छन्दों के विभेद को वर्णित करने वाला ‘मेरुप्रस्तार’ पास्कल के त्रिभुजसे तुलनीय बनता है। वेदों के क्रमपाठ, घनपाठ आदि में गणित के श्रेणी-व्यवहार के तत्त्व वर्तमान हैं।
यदि यह जानना हो कि समाज में 56 प्रकार के व्यंजन का प्रयोग किस प्रकार प्रचलित है, तो इसके लिये वैद्यकशास्त्र में वर्णित गणित के ‘अंक-पाश’ के अन्तर्गत ‘संचय’ (Combination) के नियमों के आधार पर कुल 6 रसों के द्वारा 63 तथा अन्ततः 56 विभेदों की संकल्पना का अध्ययन अपेक्षित होगा।
साहित्य-शास्त्र में भी गणित के आधार पर मनोरम रचनाएँ प्राप्त होती हैं। वहां पाणिनीय व्याकरण के एक प्रमुख उदाहरण ‘लाकृति’ के आधार पर सुख-दुख में एक समान रहने वाले सज्जन तथा 9 संख्या की मनोहारी समानता बताई गई है। महाकवि श्रीहर्ष ने बताया है कि दमयन्ती के कान आखिर क्यों तथा किस प्रकार सर्वथा नए रचे गए। उन्होंने माना कि उपनिषदों में वर्णित 18 विद्याओं में से 9-9 विद्याओं का अनुप्रवेश दमयन्ती के कानों के अन्दर तक हुआ था। ये नव अंक ही कानों में पहुँच कर शब्दसाम्य से ‘नव’ बन गए—
अस्या यदष्टादश संविभज्य विद्याः श्रुतीः दध्रतुरर्धमर्धम्।कर्णान्तरुत्कीर्णगभीररेखः किं तस्य संख्यैव नवा नवांकः।। (नैषध, 7.63)खगोल-विज्ञान के साथ तो गणित का अन्योन्य सम्बन्ध माना गया है। भास्कराचार्य का कहना है कि खगोल तथा गणित में एक दूसरे से अनभिज्ञ पुरुष उसी प्रकार महत्त्वहीन है, जैसे घृत के बिना व्यंजन, राजा के बिना राज्य तथा अच्छे वक्ता के बिना सभा होती है—
भोज्यं यता सर्वरसं विनाज्यं राज्यं यथा राजविवर्जितं च।सभा न भातीव सुवक्तृहीना गोलानभिज्ञो गणकस्तथात्र।। (सिद्धान्तशिरोमणि, गोलाध्याय, श्लोक 4)
गणित के विभिन्न क्षेत्रों में भारत का योगदानसंपादित करेंप्राचीनकाल तथा मध्यकाल के भारतीय गणितज्ञों द्वारा गणित के क्षेत्र में किये गये कुछ प्रमुख योगदान नीचे दिये गये हैं-
(१) अंकगणित : दाशमिक प्रणाली (Decimal system), ऋण संख्याएँ (Negative numbers) (ब्रह्मगुप्त देखें), शून्य (हिन्दू अंक प्रणाली देखें), द्विक संख्या प्रणाली (Binary numeral system), स्थानीय मान पर आधारित संख्या आधुनिक संख्या निरूपण, फ्लोटिंग पॉइंट संख्याएँ (केरलीय गणित सम्प्रदाय देखें), संख्या सिद्धान्त, अनन्त (Infinity) (यजुर्वेद देखें), टांसफाइनाइट संख्याएँ (Transfinite numbers), अपरिमेय संख्याएँ (शुल्बसूत्र देखें)
(२) भूमिति अर्थात भूमि मापन का शास्त्र : वर्गमूल(बक्षाली पाण्डुलिपि देखें), घनमूल (महावीर देखें), पाइथागोरीय त्रिक (शुल्बसूत्र देखें, बौधायन तथा आपस्तम्ब ने पाइथागोरस प्रमेय का स्पष्ट कथन किया है किन्तु बिना उपपत्ति (proof) के), ट्रांसफॉर्मेशन (पाणिनिदेखें), पास्कल त्रिकोण (पिंगल देखें)
(३) बीजगणित: द्विघात समीकरण (शुल्बसूत्र, आर्यभट, और ब्रह्मगुप्त देखें), त्रिघात समीकरण और चतुर्घात समीकरण (biquadratic equations) (महावीर और भास्कर द्वितीय देखें)
(४) गणितीय तर्कशास्त्र (लॉजिक): Formal grammars, formal language theory, the Panini-Backus form (पाणिनि देखें), Recursion (पाणिनि देखें)
(५) सामान्य गणित: Fibonacci numbers (पिंगलदेखें), मोर्स कोड का प्राचीनतम रूप (पिंगल देखें), लघुगणक, घातांक (जैन गणित देखें), कलन विधि , अल्गोरिज्म (Algorism) (आर्यभट और ब्रह्मगुप्त देखें)
(६) त्रिकोणमिति: त्रिकोणमितीय फलन (सूर्य सिद्धान्तऔर आर्यभट देखें), त्रिकोणमितीय श्रेणी (केरलीय गणित सम्प्रदाय देखें)
(७) कैलकुलस : आर्यभट की ज्या सारणी, माधव की ज्या सारणी, तथा केरलीय गणित सम्प्रदाय द्वारा किये गये कार्य अत्यन्त महत्वपूर्ण, मौलिक और न्यूटन आदि से कई सौ वर्ष पहले के हैं।
भारतीय गणित का इतिहाससंपादित करेंमुख्य लेख: भारतीय गणित का इतिहास
सभी प्राचीन सभ्यताओं में गणित विद्या की पहली अभिव्यक्ति गणना प्रणाली के रूप में प्रगट होती है। अति प्रारंभिक समाजों में संख्यायें रेखाओं के समूह द्वारा प्रदर्शित की जातीं थीं। यद्यपि बाद में, विभिन्न संख्याओं को विशिष्ट संख्यात्मक नामों और चिह्नों द्वारा प्रदर्शित किया जाने लगा, उदाहरण स्वरूप भारत में ऐसा किया गया। रोम जैसे स्थानों में उन्हें वर्णमाला के अक्षरों द्वारा प्रदर्शित किया गया। यद्यपि आज हम अपनी दशमलव प्रणाली के अभ्यस्त हो चुके हैं, किंतु सभी प्राचीन सभ्यताओं में संख्याएं दशमाधार प्रणाली (decimal system) पर आधारित नहीं थीं। प्राचीन बेबीलोन में 60 पर आधारित संख्या-प्रणाली का प्रचलन था।
भारत में गणित के इतिहास को मुख्यता ५ कालखंडों में बांटा गया है-
१. आदि काल (500 इस्वी पूर्व तक)
(क) वैदिक काल (१००० इस्वी पूर्व तक)- शुन्य और दशमलव की खोज
(ख) उत्तर वैदिक काल (१००० से ५०० इस्वी पूर्व तक) इस युग में गणित का भारत में अधिक विकास हुआ। इसी युग में बोधायन शुल्व सूत्र की खोज हुई जिसे हम आज पाइथागोरस प्रमेय के नाम से जानते है।
२. पूर्व मध्य काल – sine, cosine की खोज हुई।
३. मध्य काल – ये भारतीय गणित का स्वर्ण काल है। आर्यभट्ट, श्रीधराचार्य, महावीराचार्य आदि श्रेष्ठ गणितज्ञ हुए।
४. उत्तर-मध्य काल (१२०० इस्वी से १८०० इस्वी तक) - नीलकंठ ने १५०० में sin r का मान निकालने का सूत्र दिया जिसे हम ग्रेगरी श्रेणी के नाम से जानते है।
५. वर्तमान काल - रामानुजम आदि महान गणितज्ञ हुए।
भारतीय गणित : एक सूक्ष्मावलोकनसंपादित करेंगणित मूलतः भारतीय उपमहाद्वीप में विकसित हुआ। शून्यएवं अनन्त की परिकल्पना, अंकों की दशमलव प्रणाली, ऋणात्मक संख्याएं, अंकगणित, बीजगणित, ज्यामिति एवं त्रिकोणमिति के विकास के लिए संपूर्ण विश्व भारत का कृतज्ञ है। वेद विश्व की पुरातन धरोहर है एवं भारतीय गणित उससे पूर्णतया प्रभावित है। वेदांग ज्योतिष में गणित की महत्ता इस प्रकार व्यक्त की गई है :
जिस प्रकार मयूरों की शिखाएं और सर्पों की मणियां शरीर के उच्च स्थान मस्तिष्क पर विराजमान हैं, उसी प्रकार सभी वेदांगों एवं शास्त्रों में गणित का स्थान सर्वोपरि है।सिंधु घाटी की सभ्यता भारतीय उपमहाद्वीप के पश्चिमोत्तर भागों में फैली थी। इतिहासकार इसे ईसा पूर्व 3300-1300 का काल मानते हैं। मोहनजोदड़ो एवं हड़प्पा की खुदाई से प्राप्त अवशेषों एवं शिलालेखों से उस समय की प्रयुक्त गणित की जानकारी प्राप्त होती है। उस समय की ईंटों एवं भिन्न-भिन्न भार के परिमाप के विविध आकारों से स्पष्ट होता है कि प्राचीन भारतीयों को ज्यामिति की प्रारंभिक जानकारी थी। लंबाई के परिमाप की विशिष्ट विधि थी जिससे ठीक-ठीक ऊंचाई ज्ञात हो सके। ईंटों के निर्माण की विधि, शुद्धमाप के लिए भार के विविध आकार एवं लंबाई के विविध परिमापों से स्पष्ट है कि सिंधु घाटी की सभ्यता परिष्कृत एवं विकसित थी। उस समय अंकगणित, ज्यामिति एवं प्रारंभिक अभियांत्रिकी का ज्ञान था।
वेद विश्व का सबसे पुराना ग्रंथ है। बाल गंगाधर तिलक ने खगोलीय गणना के आधार पर इसका काल ईसा पूर्व 6000-4500 वर्ष निर्धारित किया है। ऋग्वेद की ऋचाओं में 10 पर आधारित विविध घातों की संख्याओं को अलग-अलग संज्ञा दी गई है, यथा एक (100 ), दश (101 ) शत (102 ) सहस्त्र (103 ), आयुत (104 ), लक्ष (105 ), प्रयुत (106 ), कोटि (107 ), अर्बुद (108 ), अब्ज (109 ), खर्ब (1010 ), विखर्ब (1011 ), महापदम (1012 ), शंकु (1013 ), जलधि (1014), अन्त्य (1015 ), मध्य (1016 ) और परार्ध (1017 )।
इन संख्याओं से स्पष्ट है कि वैदिक काल से ही अंकों की दशमलव प्रणाली प्रचलित है। यजुर्वेद में गणितीय संक्रियाएं- योग, अन्तर, गुणन, भाग तथा भिन्न आदि का समावेश है, उदाहरणार्थ यजुर्वेद की निम्न ऋचाओं पर ध्यान दें।
एका च मे तिस्त्रश्च मे तिस्त्रश्च मे पंच च मेपंच च मे सप्त च मे सप्त च मे नव च मे नव चमऽएकादश च में त्रयोदश च मे त्रयोदश च मेपञचदश च मे पंचदश च मे सप्तदश च मे सप्तदशच मे नवदश च मे नवदश च मे एक विंशतिश्च मेत्रयास्त्रंशच्च मे यज्ञेन कल्पन्ताम्॥ 18.24अर्थात् यज्ञ के फलस्वरूप हमारे निमित्त एक-संख्यक स्तोम(यज्ञ कराने वाले), तीन, पांच, सात, नौ, ग्यारह, तेरह, पन्द्रह, सत्रह, उन्नीस, इक्कीस, तेईस, पच्चीस, सत्ताइस, उनतीस, इकतीस और तैंतीस संख्यक स्तोम सहायक होकर अभीष्ट प्राप्त कराएं। इस श्लोक में विषम संख्याओं की समांतर श्रेणीप्रस्तुत की गई है-
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33यज्ञ का अर्थ संगतिकरण से है। अंकों के अंकों की संगति से अंक विद्या बनती है। श्लोक में प्रत्येक संख्या के साथ ‘च’ जुड़ा है जिसका अर्थ ‘और’ से है। इसका अर्थ +1 जोड़ने से सम अथवा विषम राशियां बन जाती हैं। इसी से पहाड़ा एवं वर्गमूल के सिद्धांतों का प्रतिपादन होता है। इस अध्याय का अगला श्लोक (18.25) सम संख्याओं के समांतर श्रेणी प्रस्तुत करता है।
4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44.अतः निश्चित रूप से कहा जा सकता है कि वैदिक काल में-
(क) एक अंकीय संख्याएं 1, 2, 3, ..9;(ख) शून्य और अनंत;(ग) क्रमागत संख्याएं एवं भिन्नात्मक संख्याएं; तथा(घ) गणितीय संक्रियाओं का उल्लेखनीय ज्ञान था।धार्मिक अनुष्ठानों में वेदियों की रचना के लिए ज्यामिति का आविष्कार हुआ। शतपथ ब्राह्मण एवं तैत्तरीय संहिता में ज्यामिति की संकल्पना प्रस्तुत है। पर सामान्यतयाः ऐसा विचार है कि वेदांग ज्योतिष के शुल्वसूत्र से आधुनिक ज्यामिति की नींव पड़ी। वेदांग ज्योतिष के अनुसार सूर्य की संक्रांति एवं विषुव की स्थितियां कृतिका नक्षत्र के वसंत विषुव के आस-पास हैं।
यह स्थिति ईसा पूर्व 1370 वर्ष के लगभग की है। अतः वेदांग ज्योतिष की रचना संभवतः ईसा पूर्व वर्ष 1300 के आस-पास हुई होगी। इस युग के महान गणितज्ञ लगध,बौधायन, मानव, आपस्तम्ब, कात्यायन रहे हैं। इन सभी ने अलग-अलग सूल्व सूत्र की रचना की। बोधायन का सूल्व सूत्र इस प्रकार है-
दीर्घस्याक्षणया रज्जुः पार्श्वमानी तिर्यकं मानी च।यत्पृथग्भूते कुरुतस्तदुभयांकरोति ॥अर्थात् दीर्घ चतुरस (आयत) के विकर्ण (रज्जू) का क्षेत्र (वर्ग) का मान आधार (पार्श्वमानी) एवं त्रियंगमानी (लंब) के वर्गों का योग होता है। सूल्व सूत्र आधुनिक काल में 'पाइथागोरस का सूत्र' के नाम से प्रचलित है। पैथागोरस ने ईसा पूर्व 535 में मिस्र की यात्रा की थी। संभव है कि पैथागोरस को मिस्र में सूल्व सूत्र की जानकारी प्राप्त हो चुकी हो।बोधायन ने अपरिमेय राशि 20.5 का मान इस प्रकार दिया हैः
20.5 = 1 + 1/3 + 1/3.4 - 1/3.4.3.4महर्षि लगध ने ऋग्वेद एवं यजुर्वेद की ऋचाओं से वेदांग ज्योतिष संग्रहीत किया। वेदांग ज्योतिष में ग्रहों की स्थिति, काल एवं गति की गणना के सूत्र दिए गए हैं।
तिथि मे का दशाम्य स्ताम् पर्वमांश समन्विताम्।विभज्य भज समुहेन तिथि नक्षत्रमादिशेत॥अर्थात् तिथि को 11 से गुणा कर उसमें पर्व के अंश जोड़ें और फिर नक्षत्र संख्या से भाग दें। इस प्रकार तिथि के नक्षत्र बतावें।नेपालमें इसी ग्रन्थके आधारमे विगत ६ सालसे "वैदिक तिथिपत्रम्" व्यवहारमे लाया गया है |हमारे ऋषि, महर्षियों को बड़ी संख्याओं में अपार रुचि थी। ईसा पूर्व छठी शताब्दी में गौतम बुद्ध की जीवनी पर आधारित ‘ललितविस्तर’ की रचना हुई। उसमें गौतम बुद्ध के गणित कौशल की परीक्षा का प्रसंग आता है। उनसे कोटि(107 ) से ऊपर संख्याओं के अलग-अलग नाम के बारे में पूछा गया। युवा सिद्धार्थ (गौतम बुद्ध का बचपन का नाम) ने कोटि के बाद 1053 की संख्याओं का अलग-अलग नाम दिया और फिर 1053 को आधार मान कर 10421 तक की संख्याओं को उनके नामों से संबोधित किया। गौतम बुद्ध बौद्ध धर्म के प्रवर्तक थे। उन्हीं के समकक्ष महावीर स्वामी का भी पदार्पण हुआ जिन्होंने जैन धर्म की स्थापना की। जैन महापुरुषों की गणित में भी रुचि थी। उनकी प्रसिद्ध रचनाएं- ‘सूर्यप्रज्ञप्ति सूत्र’, 'वैशाली गणित’, ‘स्थानांग सूत्र’, ‘अनुयोगद्वार सूत्र’ एवं ‘शतखण्डागम’ है। भद्रवाहु एवं उमास्वति प्रसिद्ध जैन गणितज्ञ थे।
वैदिक परंपरा में गुरु अपना ज्ञान मौखिक रूप से अपने योग्य शिष्य को प्रदान करता था पर ईसा पूर्व 5वीं शताब्दी में ब्राह्मी लिपि का आविष्कार हुआ। गणित की पुस्तकों की पांडुलिपियां ब्राह्मी लिपि में तैयार हुईं। ‘बख्शाली पाण्डुलिपि’पहली पुस्तक थी जिसके कुछ अंश पेशावर के एक गांव वख्शाली में प्राप्त हुए। ईसा पूर्व 3 शताब्दी की लिखी यह पुस्तक एक प्रमाणिक ग्रंथ है। इसमें गणितीय संक्रियाओं-दशमलव प्रणाली, भिन्न, वर्ग, घन, ब्याज, क्रय एवं विक्रय आदि विषयों पर विस्तृत चर्चा हुई है। आधुनिक गणित के त्रुटि स्थिति (False Position) विधि का भी यहां समावेश है।
ज्योतिष की एक अन्य पुस्तक ‘सूर्य सिद्धान्त’ की भी रचना संभवतः इसी दौरान हुई। वैसे इसके लेखक के बारे में कोई जानकारी नहीं है। पर मयासुर को सूर्यदेव की आराधना के फलस्वरूप यह ज्ञान प्राप्त हुआ था। निःसंदेह यह आर्यों की कृति नहीं है। सूर्य सिद्धांत में बड़ी से बड़ी संख्याओं को व्यक्त करने की विधि वर्णित है। गिनती के अंकों को संख्यात्मक शब्दों में व्यक्त किया गया है, यथा रूप (1), नेत्र (2), अग्नि (3), युग (4), इन्द्रिय (5), रस (6), अद्रि (7 - पर्वत शृंखला), बसु (8), अंक (9), रव (0)। इन शब्दों के पर्यायवाची शब्द अथवा हिंदू देवी-देवताओं के नाम से भी व्यक्त किया गया है। पंद्रह को तिथि से तथा सोलह को निशाकर से। अंकों को दाएं से बाएं की तरफ रख कर बड़ी से बड़ी संख्या व्यक्त की गई है। सूर्य सिद्धांत में विविध गणितीय संक्रियाओं का वर्णन है। आधुनिक त्रिकोणमिति का आधार भी सूर्य सिद्धांत के तीसरे अध्याय में विद्यमान है। ज्या, उत्क्रम ज्या एवं कोटि ज्या परिभाषित किया गया है। यहां ध्यान देने योग्य बात है कि ज्या शब्द अरबी में जैब से बना, जिसका लैटिनरूपांतरण Sinus में किया गया और फिर यह वर्तमान 'Sine' में परिवर्तित हुआ। सूर्य सिद्धांत में π का मान 101/2दिया गया है।
भारतीय इतिहास में गुप्त काल 'स्वर्ण युग' के रूप में माना जाता है। महाराजा श्रीगुप्त द्वारा स्थापित गुप्त साम्राज्य पूरे भारतीय उपमहाद्वीप में फैला था। सन् 320-550 के मध्य इस साम्राज्य में ज्ञान की हर विद्या में महत्त्वपूर्ण आविष्कार हुए। इस काल में आर्यभट (476) का आविर्भाव हुआ। उनके जन्म स्थान का ठीक-ठीक पता नहीं है पर उनका कार्यक्षेत्र कुसुमपुर (वर्तमान पटना) रहा। 121 श्लोकों की उनकी रचना आर्यभटीय के चार खंड हैं- गितिका पद (13), गणित पद (33), कालकृपा पद (25) और गोल पद (50)। प्रथम खंड में अंक विद्या का वर्णन है तथा द्वितीय एवं तृतीय खंड में बीजगणित, त्रिकोणमिति, ज्यामिति एवं ज्योतिष पर विस्तारपूर्वक वर्णन किया गया है। उन्होंने π का 4 अंकों तक शुद्ध मान ज्ञात किया- π = 3.4161। संख्याओं को व्यक्त करने के लिए उन्होंने देवनागरी वर्णमाला के पहले 25 अक्षर (क-म) तक 1-25, य-ह (30, 40, 50, ... 100) और स्वर अ-औ तक 100, 1002 , ... 1008 से प्रदर्शित किया। उदाहरण के लिए :
जल घिनि झ सु भृ सृ ख(8 + 50) (4 + 20) (9 + 70) (90 + 9) 2 = 299792458यहां भी संख्याएं दाएं से बाएं की तरफ लिखी गई हैं। आधुनिक बीज लेख (Cryptolgy) के लिए इससे अच्छा उदाहरण क्या हो सकता है। आर्यभट की समृति में भारत सरकार ने 19 अपै्रल 1975 को प्रथम भारतीय उपग्रह आर्यभट को पृथ्वी की निम्न कक्षा में स्थापित किया।
आर्यभट के कार्यों को भास्कराचार्य (600 ई) ने आगे बढ़ाया। उन्होंने महाभास्करीय, आर्यभटीय भाष्य एवं लघुभास्करीय की रचना की। महाभास्करीय में कुट्टक(Indeterminate) समीकरणों की विवेचना की गई है। भास्कराचार्य की स्मृति में द्वितीय भारतीय उपग्रह का नाम ‘भास्कर’ रखा गया।
भास्कराचार्य के समकालीन भारतीय गणितज्ञ ब्रह्मगुप्त(598 ई) थे। ब्रह्मगुप्त की प्रसिद्ध कृति ब्राह्मस्फुटसिद्धान्तहै। इसमें 25 अध्याय हैं। बीजगणित के समीकरणों के हल की विधि एवं द्विघातीय कुट्टक समीकरण, X2 = N.y2 + 1 का हल इसमें दिया गया है। जोशेफ लुईस लगरेंज (सन् 1736 - 1813) ने कुट्टक समीकरण का हल पुनः ज्ञात किया। भास्कराचार्य ने प्रिज्म एवं शंकु के आयतन ज्ञात करने की विधि बताई तथा गुणोत्तर श्रेणी के योग का सूत्र दिया। ‘‘किसी राशि को शून्य से विभाजित करने पर अनंत प्राप्त होता है’’, कहने वाले वह प्रथम गणितज्ञ थे। महावीराचार्य(सन् 850) ने संख्याओं के लघुतम मान ज्ञात करने की विधि प्रस्तुत की। गणितसारसंग्रह उनकी कृति है।
श्रीधराचार्य (सन् 850) ने द्विघाती समीकरणों के हल की विधि दी जो आज 'श्रीधराचार्य विधि' के नाम से ज्ञात है। उनकी रचनाएं -‘नवशतिका’, ‘त्रिशतिका’, एवं ‘पाटीगणित’ हैं। ‘पाटीगणित’ का अरबी भाषा में अनुवाद ‘हिजाबुल ताराप्त’ शीर्षक से हुआ। आर्यभट द्वितीय (सन् 920 -1000) ने महासिद्धान्त की रचना की जिसमें अंकगणित एवं बीजगणित का उल्लेख है। उन्होंने π का मान 22/7 निर्धारित किया। श्रीपति मिश्र (सन् 1039) ने ‘सिद्धान्तशेषर’ एवं ‘गणिततिलक’ की रचना की जिसमें क्रमचय एवं संचयके लिए नियम दिए गए हैं।
नेमिचन्द्र सिद्धान्तचक्रवर्ती (सन् 1100) समुच्चय सिद्धांतको प्रतिपादित करने वाले प्रथम गणितज्ञ थे। उन्होंने सार्वभौमिक समुच्चय एवं सभी प्रकार के मानचित्रण (Mapping) एवं सुव्यवस्थित सिद्धांतों का प्रतिपादन किया। गैलीलियो एवं जार्ज कैंटर ने इस विधि का ‘एक से एक’ (वन-टू-वन) मानचित्रण में उपयोग किया।
भास्कराचार्य द्वितीय (सन् 1114) ने ‘सिद्धान्तशिरोमणि’, ‘लीलावती’, ‘बीजगणित’ ‘गोलाध्याय’, ‘ग्रहगणितम’ एवं ‘करणकौतुहल’ की रचना की। बीजगणित के कुट्टक समीकरणों के हल की चक्रवाल विधि दी। यह विधि जर्मन गणितज्ञ हरमन हेंकेल (सन् 1839-73) को बहुत पसंद आई। हेंकल के अनुसार लगरेंज से भी पूर्व संख्या सिद्धांत में चक्रवाल विधि एक उल्लेखनीय खोज है। पीयरे डी फरमेट (सन् 1601-1665) ने भी कुट्टक समीकरणों के हल के लिए चक्रवाल विधि का प्रयोग किया था।
भास्कराचार्य द्वितीय के पश्चात् गणित में अभिरुचि केरल के नम्बुदरी ब्राह्मणों ने प्रकट की। ‘आर्यभटीय’ की एक पांडुलिपि मलयालम भाषा में केरल में प्राप्त हुई। केरल के विद्वानों में नारायण पण्डित (सन् 1356) का विशेष योगदान है। उनकी रचना-‘गणितकौमुदी’ में क्रमचय एवं संचय, संख्याओं का विभागीकरण तथा ऐन्द्र जालिक (Magic) वर्ग की विवेचना है। नारायण पंडित के छात्र परमेश्वर (सन् 1370 - 1460) ने मध्यमान सिद्धांत (Mean Value theorem) स्थापित किया तथा त्रिकोणमितीय फलन ज्याका श्रेणी-हल दिया :
ज्या (x) = x - x3/3 +परमेश्वर के छात्र नीलकण्ठ सोमयाजि (सन् 1444-1544) ने 'तंत्रसंग्रह' की रचना की। उन्होंने व्युतक्रम स्पर्श ज्या का श्रेणी हल प्रस्तुत किया :
tan -1 (x) = x - x3/3 + x5/5इसके साथ ही गणितीय विश्लेषण, संख्या सिद्धांत, अनंत श्रेणी, सतत भिन्न पर भी उनका अमूल्य योगदान है। व्युतक्रम स्पर्श ज्या का उनका श्रेणी हल वर्तमान में ग्रीगरीज श्रेणी के नाम से प्रचलित है।
सम्पूर्णानन्द संस्कृत विश्वविद्यालय के प्राचार्य रहे सुधाकर द्विवेदी (सन् 1860-1922) ने दीर्घवृतलक्षण, गोलीय रेखागणित, समीकरण मीमांशा एवं चलन-कलन पर मौलिक पुस्तकें लिखीं। आधुनिक गणितज्ञ श्रीनिवास रामानुजन् (सन् 1887-1920) ने लगभग 50 गणितीय सूत्रों का प्रतिपादन किया। स्वामी भारती तीर्थ जी महाराज (सन् 1884-1960) ने वैदिक गणित के माध्यम से गुणा, भाग, वर्गमूल एवं घनमूल की सरल विधि प्रस्तुत की। हाल ही में अमेरिकी अंतरिक्ष केंद्र के वैज्ञानिक रीक वृग्स के अनुसार पाणिनि की अष्टाध्यायीव्याकरण कम्प्यूटर आधारित भाषा प्रोगामर के लिए बहुत ही उपयुक्त है। ईसा पूर्व 650 में लिखी इस पुस्तक में 4000 बीजगणित जैसे सूत्र हैं।
इस प्रकार यह कहा जा सकता है कि विविध आयामों में भारतीय गणित बहुत ही समृद्ध है। कम्प्यूटर-भाषाओं के साथ-साथ आधुनिक गणित प्राचीन भारतीय गणित का ऋणी है।
भारतीय गणित : विद्वानों के उद्गारसंपादित करें'भारत और वैज्ञानिक क्रांति' (Indic Mathematics: India and the Scientific Revolution)
पश्चिम में गणित का अध्ययन लम्बे समय से कुछ हद तक राष्ट्र केंद्रित पूर्वाग्रह से प्रभावित रहा है, एक ऐसा पूर्वाग्रह जो प्रायः बड़बोले जातिवाद के रूप में नहीं बल्कि गैरपश्चिमी सभ्यताओं के वास्तविक योगदान को नकारने या मिटाने के प्रयास के रूप में परिलक्षित होता है। पश्चिम अन्य सभ्यताओं विशेषकर भारत का ऋणी रहा है। और यह ऋण ’’पश्चिमी’’ वैज्ञानिक परंपरा के प्राचीनतम काल - ग्रीक सम्यता के युग से प्रारंभ होकर आधुनिक काल के प्रारंभ, पुनरुत्थान काल तक जारी रहा है - जब यूरोप अपने अंध युग से जाग रहा था।इसके बाद डॉ॰ ग्रे भारत में घटित गणित के सर्वाधिक महत्वपूर्ण विकसित उपलब्धियों की सूची बनाते हुए भारतीय गणित के चमकते सितारों जैसे आर्यभट, ब्रह्मगुप्त, महावीर, भास्कर और माधव के योगदानों का संक्षेप में वर्णन करते हैं। अंत में वे जोर देकर कहते हैं -
यूरोप में वैज्ञानिक क्रांति के विकास में भारत का योगदान केवल हासिये पर लिखी जाने वाली टिप्पणी नहीं है जिसे आसानी से और अतार्किक तौर पर यूरोप केंद्रित पूर्वाग्रह के आडम्बर में छिपा दिया गया है। ऐसा करना इतिहास को विकृत करना है और वैश्विक सभ्यता में भारत के महानतम योगदान को नकारना है।
भारतीय गणित : यूरोकेन्द्रीयताका शिकारसंपादित करेंअब यह स्पष्ट रूप से माना जाने लगा है कि गणित में भारत के योगदान को सुनियोजित तरीके से कमतर बताया गया है या उसकी उपेक्षा की गयी है। भारतीय मनीषियों द्वारा गणित में बहुत से योगदान (अनुसंधान और विकास) तत्कालीन यूरोपियों को पता था जिनका ज्ञान-विज्ञान यूरोपियों ने थोड़ा बहुत हेर-फेर करके अपने प्रगति के नाम पर मूल अनुसंधान के रूप में प्रस्तुत कर दिया।
भारतीत गणित की प्राचीनता की तुलनात्मक सारणीसंपादित करे
क्रमांकयूरोपीय दावेआविष्कर्ताभारतीय दावेआविष्कर्ता0अरबी अंक प्रणालीअल-ख्वारिज्मी ( 825 ई॰)हिन्दू अंक प्रणालीप्रथम शताब्दी1पाथागोरीय त्रिकपाइथागोरस (540 ईसापूर्व)तैत्तिरीय त्रिकतैत्तिरीय संहिता(3500 ईसापूर्व)2पाइथागोरस प्रमेयपाइथागोरस (540 BC)बौधायन प्रमेयबौधायन(2000 BC)3हीरोन का सूत्रहीरोन (10-70 AD)शुल्बसूत्रशुल्बसूत्र(2000 -1700 BC), ब्रह्मगुप्त का सूत्र (७वीं शताब्दी)4Backus-Naur Form NotationBackus-Naur (1963)पाणिनी-बाकस-नौर फॉर्म नोटेशनपाणिनी(700 BC)5पास्कल त्रिकोणब्लेज पास्कल (1623-1662)पिंगल-वराहमिहिर त्रिभुजपिंगलाचार्य(700 BC), वराहमिहिर(488 AD या 150 BC)6फिबोनाकी सिरीसपीसा का फिबोनाकी (1202 AD)पिंगल-विराहंक श्रेणीपिंगलाचार्य (700 BC), विरहांक(6ठी शताब्दी)7जॉर्ज कैंटर सिद्धान्त (The concept of infinity and the theory of infinite cardinal numbers)जॉर्ज कैंटर (1845-1918)जैन-कैंटर सिद्धान्तजैन धर्म के ग्रन्थ (500-200 BC)8जॉन नेपियर लघुगणकजॉन नेपियर(1550-1617)वीरसेन लघुगणकवीरसेन(760-830 AD)9Extended Euclidean Algorithmयुक्लिड(300 BC)आर्यभट्ट अल्गोरिद्मआर्यभट्ट(476 AD या 2742 BC)10विल्सन का प्रमेयजॉन विल्सन (1741-1793)भास्कर प्रमेयभास्कर प्रथम (570-650 AD)11पेल का समीकरणजॉन पेल (1610-1685 AD)ब्रह्मगुप्त समीकरणब्रह्मगुप्त(598-668AD)12जॉर्ज कैंटर का समुच्चय सिद्धान्तजॉर्ज कैंटर (1845-1918)वीरसेन-कैंटर समुच्चय सिद्धान्तवीरसेन(760-830 AD)13न्यूटन-गाउस अन्तर्वेशन सूत्रन्यूटन (1643-1727), गाउस (1777-1855)गोविन्द स्वामी अन्तर्वेशन सूत्रगोविन्दस्वामी(800-860 AD)14Herigone’s FormulaHerigone (1580-1643 AD)महावीर सूत्रमहावीर(814-880 AD)15Newton-Stirling Interpolation Formulaआइजक न्यूटन(1643-1727)ब्रह्मगुप्त अन्तर्वेशन सूत्रब्रह्मगुप्त (598-668AD)16वर्ग समीकरणहल करने का आधुनिक सूत्रश्रीधर का सूत्रश्रीधराचार्य(750 AD)17Newton-Gauss Backward Interpolation Formulaन्यूटन (1643-1727) Gauss (1777-1855)वटेश्वर पश्चवर्ती अन्तर्वेशन सूत्रवटेश्वर (880 AD)18रोल का प्रमेयमाइकेल रोल (1691)भास्कराचार्य प्रमेयभास्कर द्वितीय(1114-1185 AD)19फर्मा की गुणनखण्ड विधिपिअरे डी फर्मा (Fermat 1601-1665)नारायण पण्डित की गुणनखण्ड विधिनारायण पण्डित(1325-1400 AD)20Newton’s Power SeriesNewton (1643-1727)माधव श्रेणीमाधव(1340-1425 AD)21टेलर श्रेणीब्रूक टेलर (1685-1731)माधव श्रेणीमाधव(1340-1425 AD)22Gregory Seriesमाधव श्रेणीमाधव(1340-1425 AD)23Leibnitz Seriesलैब्नीज (1646-1716)माधव श्रेणीमाधव(1340-1425 AD)24Euler Seriesआइलर(177-1783)माधव श्रेणीमाधव(1340-1425 AD)25Lhuilier FormulaLhuilier (1782)परमेश्वर सूत्रपरमेश्वर(1360-1445 AD)26Tychonic Planetary modelTycho Brahe (1546-1601)नीलकण्ठ का ग्रह मॉडलनीलकण्ठ(1444-1543 AD)27Tycho Brahe : Inventor of the technique of “Reduction to ecliptic”Tycho Brahe (1546-1601)अच्युत पिषारटि : Inventor of the technique of “Reduction to ecliptic”अच्युत पिषारटि(1540-1621 AD)28हिप्पार्कस : त्रिकोणमिति का जनकहिप्पार्कस (190-120 BC)सूर्यसिद्धान्त के रचयिता “आधुनिक त्रिकोणमिति के जनक”.सूर्य सिद्धांत(800 BC या 3000 BC?)29डायोफैंटीय समीकरणडायोफैंटस (तृतीय शताब्दी)आर्यभट समीकरणआर्यभट(476 AD या 2742 BC)30Formulae for finding the volume of a frustum of cone and the volume of a pyramidकेपलर (1571-1630)ब्रह्मगुप्त(598-668 AD) :31Extended Euclidean algorithmआर्यभट्ट कलनविधि[5]आर्यभट(476 AD या 2742 BC)32चीनी शेषफल प्रमेयSunzi Suanjing (3rd Cent AD)आर्यभट का शेषफल प्रमेयआर्यभट(६ठी श्ताब्दी)
भारतीय गणित की शब्दावलीसंपादित करेंगणित
पाटीगणित
बीजगणित
अव्यक्त गणित -- 'अव्यक्त गणित' तथा 'अव्यक्त रासि' का प्रयोग क्रमशः आधुनिक बीजगणित (अल्जेब्रा) एवं 'अज्ञात राशि' (unknown) के लिए हुआ है।
करण - गणना करने की विधि या विधि बताने वाला ग्रन्थ
कुट्टक - अनिर्धार्य समीकरण जिनका पूर्णांक हल निकालना होता था।
त्रैराशिकव्यवहार (द रूल ऑफ थ्री)
यावत-तावत् - भारतीय बीजगणित में अज्ञात-राशि के लिए 'यावत्-तावत्' (जितने कि उतनी मात्रा में) का प्रयोग हुआ है।
वर्ण (variable) - ब्रह्मगुप्त ने अज्ञात राशि के लिए 'वर्ण' (रंग, अक्षर) शब्द का प्रयोग किया। इसलिए कालान्तर में अज्ञात राशि के लिए कालक (का), नीलक (नी), पीलक (पी) आदि का प्रयोग होता रहा।
करणी (surd)
परिकर्म (mathematical operation)
इष्टकर्म (Rule of supposition) - यह बहुत प्राचीन नियम है किन्तु भास्कराचार्य ने इसे यह नाम प्रदान किया है। इसमें सारी संक्रियाएं किसी कल्पित राशि के माध्यम से की जातीं हैं। [7]
मिश्रक-व्यवहार - इसमें ब्याज, स्वर्ण की मिलावट आदि से सम्बन्धित प्रश्न आते हैं।
क्षेत्रगणितव्यवहार (Measurement of Areas)
खातव्यवहार (calculations regarding excavations)
छायाव्यवहार (Calculations relating to shadows)
वर्ग, वर्गमूल, घन, घनमूल आदि
अर्धच्छेद - किसी संख्या N का अर्धच्छेद वह संख्या है जिसको २ के उपर घात लगाने से N मिलता है। अतः ३२ का अर्धच्छेद ५ है।
कटपयादि
अर्धज्या या ज्यार्ध (half cord)
जीवा (कॉर्ड)
शून्य
अनन्त
समीकरण (equation)
मेरुप्रस्तार (pyramidal expansion or Pascal triangle
Comments